

## **Static Mixer**

A static mixer is a device, usually metal or plastic fixed to a pipe or tube. As the fluid flows through this section, it is continuously divided, reoriented, sheared and stretched by the helical right-and left-hand elements producing new interfacial element that are subsequently recombined. Through the action of the static mixer, fluid at the center of the flow field can be directed towards the walls while material at the walls is sent to the center. This produces a distributive mixing of the fluid components in a radial direction. It can produce a homogeneous blend of dispersion in laminar, transitional or turbulent flow within a very short pipe length. It is widely used in the process industry for a large variety of mixing applications.

### **Mixing Principle**

A "static mixer" often called an inline mixer, is a device used frequently in water treatment to create an injection point for chemicals like chlorine and soda ash into a water line. Its purpose is to create turbulence that enhances the rapid mixing of the injected chemical into the water stream. Use of the static mixer can reduce the necessary size of storage tanks following the injection point.



The picture above is a cutaway made to expose the inner workings of the mixer. It's a simple device. The service flow of the water is from left to right in the picture. The chemical is injected through the threaded pipe extension on the left of the mixer body. As water passes through the mixer, it is churned by the metal baffles seen in the picture and the chemical is mixed with the water.

Flow is divided equally passing each element and number of divisions increases in a geometrical progression as the number of elements increase.



The partition number N = 2, (where n is the number of elements.)



### **Features and Benefits**

- No moving parts and no contamination
- Low capital cost and maintenance
- Easy to install as standard
- Long service life and low power requirements
- No need for tanks in most cases
- Minimal space requirement
- Improved performance of the injected chemicals.

### **The Minimum Number of Elements**

Reynolds number should be determined to specify the required number of elements. The Reynolds number can be calculated namely ;

$$Re = \frac{D_P \rho_L V_S}{\mu}$$

Where:

 $D_p =$  Pipe diameter (m)  $\rho_L =$  Mass density of water (kg/m<sup>3</sup>)

Vs = Water Velocity (m/s)

 $\mu = \text{Viscosity} (\text{kg/m-sec})$ 

| Flow<br>Regime | Reynold's<br>Number (Re)                 | No. Of<br>Elements         |
|----------------|------------------------------------------|----------------------------|
| Laminar        | <1<br>1-10<br>11-50<br>51-100<br>101-500 | 24<br>18<br>14<br>12<br>10 |
| Transitional   | 501-1,000<br>1,001-2,000                 | 8<br>6                     |
| Turbulent      | 2,001-50,000<br>50,001+                  | 4<br>2                     |

### **Material of Construction**

- stainless steel 304 & 316L
- PP, PVC and PE
- Carbon steel

### **End Connection**



### **Pressure Drop Number of Element**

Calculate Pressure Drop, ΔP

Pressure Drop Per Element (PSI)

Where :  $\Delta P = Pressure Drop (kg/cm^2) or (bar)$ f SM = Friction Lambda static mixer (from table)

$$\Delta P = 3.061 \times 10^{-6} \times f_{NSM} \rho(\overline{u})^2 E$$

f SM<0.1; **fSM** =  $\frac{16}{Re.NO} \times 6$  $\rho$  = Liquid density (g/cm<sup>3</sup>)  $\overline{u}$  = Liquid velocity (cm/s) **E** = Element

PRESSURE DROP PER ELEMENT VERSUS FLOWRATE For 1" through 12" Diameter Static Mixers



Flowrate (GPM)



### **Mixer Velocity**

Calculate Speed, V

$$V = \frac{Q}{A}$$
Where : $V = Velocity (m/s)$  $Q = Flow rate (m^3/hr)$  $A = Area (m^2)$ 

FRICTION FACTORS FOR CLEAN COMMERCIAL STEEL AND WROUGHT IRON PIPE





## Viscosity and Density of Liquids

- 1.  $\mu = Dynamic Viscosity (N-s/m^2)$
- 2. v = Kinetic Viscosity (m<sup>2</sup>/s)

$$v = rac{\mu}{
ho}$$



| Material         | T (°C) | μ (Pa.s)                 | <b>p</b> (kg/m³) |
|------------------|--------|--------------------------|------------------|
| Liquids<br>Water | 0      | 1.79 × 10 <sup>-3</sup>  | 999              |
| Water            | 20     | $1.00 \times 10^{-3}$    | 998              |
| Water            | 40     | 0.664 × 10 <sup>-3</sup> | 992              |
| Water            | 60     | 0.466 × 10 <sup>-3</sup> | 983              |
| Water            | 80     | 0.355 × 10 <sup>-3</sup> | 972              |
| Water            | 100    | 0.281 × 10 <sup>-3</sup> | 958              |
| Ethanol          | 20     | 1.20 × 10 <sup>-3</sup>  | 790              |
| Gycerol          | 20     | 1.490                    | 1261             |
| Edible oils      | 20     | 0.05-0.2                 | 920-950          |
| Edible oils      | 100    | 5-2 × 10 <sup>-3</sup>   | 880-900          |
| Milk             | 20     | 2 × 10 <sup>-3</sup>     | 1032             |
| Milk             | 70     | 0.7 × 10 <sup>-3</sup>   | 1012             |
| Beer             | 0      | 1.3 × 10 <sup>-3</sup>   | 1000             |
| Honey            | 25     | б                        | 1400             |



Water

Temperature ( deg °C )



## Head Loss in Static mixer

Darcy – Weisbach Equation

Where :

$$h_f = f \frac{Lv^2}{D2g}$$

f = coefficient of friction (Darcy – Weisbsch)
L = length of static mixer (m)
D = diameter of pipe (m)
V = velocity in the pipe (m/s)
G = acceleration due to gravity (9.81 m/s<sup>2</sup>)

For smooth pipe Reynolds number would give the following relationships between f and Re

$$f = 0.048(R_e)^{-0.20} \qquad 10^4 < R_e < 10^6$$
$$f = 0.193(R_e)^{-0.35} \qquad 3 \times 10^3 < R_e < 10^4$$

The required number of elements can also be approximated via different kinds of mixing namely ;

| Number of Elements | Applications                                                                                                 |
|--------------------|--------------------------------------------------------------------------------------------------------------|
| 1 - 4              | - Mixing of gas low viscous fluids                                                                           |
| 4 - 6              | - Mixing of low viscous fluids<br>- Homogenization of high viscous fluids<br>- Uniformization of temperature |
| 6 - 12             | - Gas - liquid contraction<br>- Blending of heavy oils<br>- Alkali washing<br>- Aeration                     |
| 12 - 18            | - Mixing of medium viscous fluids<br>- Extraction / emulsification                                           |
| 18 - 24            | - Mixing of high viscous fluids<br>- Mixing of two component resins / adhesives                              |
| >24                | - Heat exchange / reactor<br>- Specific purposes                                                             |

# **InLine Static Mixer**

# **Ordering Information**



### 4 Elements

| Part Number   | Nominal Size |       | Approx. Dimensions (mm) |     |     |       |    |    |    |  |
|---------------|--------------|-------|-------------------------|-----|-----|-------|----|----|----|--|
|               | mm.          | Inch  | D3                      | D4  | D5  | L     | Т  | n  | øe |  |
| SMV020A-V004G | 20           | 3/4   | 27                      | 75  | 100 | 130   | 14 | 4  | 15 |  |
| SMV025A-V004G | 25           | 1     | 33                      | 90  | 125 | 165   | 14 | 4  | 19 |  |
| SMV040A-V004G | 40           | 1-1/2 | 48                      | 105 | 140 | 250   | 16 | 4  | 19 |  |
| SMV050A-V004G | 50           | 2     | 60                      | 120 | 155 | 325   | 16 | 4  | 19 |  |
| SMV065A-V004G | 65           | 2-1/2 | 73                      | 140 | 175 | 395   | 16 | 4  | 19 |  |
| SMV080A-V004G | 80           | 3     | 89                      | 150 | 185 | 490   | 18 | 8  | 19 |  |
| SMV100A-V004G | 100          | 4     | 114                     | 175 | 210 | 635   | 18 | 8  | 19 |  |
| SMV150A-V004G | 150          | 6     | 168                     | 240 | 280 | 955   | 21 | 8  | 23 |  |
| SMV200A-V004G | 200          | 8     | 219                     | 290 | 330 | 1,250 | 21 | 12 | 23 |  |

#### 6 Elements

| Part Number   | Nominal Size |                | Approx. Dimensions (mm) |     |     |       |    |    |    |
|---------------|--------------|----------------|-------------------------|-----|-----|-------|----|----|----|
|               | mm.          | Inch           | D3                      | D4  | D5  | L     | Т  | n  | øe |
| SMV020A-V006G | 20           | 3/4            | 27                      | 75  | 100 | 185   | 14 | 4  | 15 |
| SMV025A-V006G | 25           | 1              | 33                      | 90  | 125 | 235   | 14 | 4  | 19 |
| SMV040A-V006G | 40           | 1-1/2          | 48                      | 105 | 140 | 365   | 16 | 4  | 19 |
| SMV050A-V006G | 50           | 2              | 60                      | 120 | 155 | 475   | 16 | 4  | 19 |
| SMV065A-V006G | 65           | 2 <b>-</b> 1/2 | 73                      | 140 | 175 | 580   | 16 | 4  | 19 |
| SMV080A-V006G | 80           | 3              | 89                      | 150 | 185 | 720   | 18 | 8  | 19 |
| SMV100A-V006G | 100          | 4              | 114                     | 175 | 210 | 940   | 18 | 8  | 19 |
| SMV150A-V006G | 150          | 6              | 168                     | 240 | 280 | 1,415 | 21 | 8  | 23 |
| SMV200A-V006G | 200          | 8              | 219                     | 290 | 330 | 1,855 | 21 | 12 | 23 |

#### 8 Elements

| Part Number   | Nominal Size |       | Approx. Dimensions (mm) |     |     |       |    |    |    |  |
|---------------|--------------|-------|-------------------------|-----|-----|-------|----|----|----|--|
|               | mm.          | Inch  | D3                      | D4  | D5  | L     | Т  | n  | øe |  |
| SMV020A-V008G | 20           | 3/4   | 27                      | 75  | 100 | 240   | 14 | 4  | 15 |  |
| SMV025A-V008G | 25           | 1     | 33                      | 90  | 125 | 305   | 14 | 4  | 19 |  |
| SMV040A-V008G | 40           | 1-1/2 | 48                      | 105 | 140 | 480   | 16 | 4  | 19 |  |
| SMV050A-V008G | 50           | 2     | 60                      | 120 | 155 | 625   | 16 | 4  | 19 |  |
| SMV065A-V008G | 65           | 2-1/2 | 73                      | 140 | 175 | 765   | 16 | 4  | 19 |  |
| SMV080A-V008G | 80           | 3     | 89                      | 150 | 185 | 955   | 18 | 8  | 19 |  |
| SMV100A-V008G | 100          | 4     | 114                     | 175 | 210 | 1,245 | 18 | 8  | 19 |  |
| SMV150A-V008G | 150          | 6     | 168                     | 240 | 280 | 1,875 | 21 | 8  | 23 |  |
| SMV200A-V008G | 200          | 8     | 219                     | 290 | 330 | 2,460 | 21 | 12 | 23 |  |